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Numerical results are presented for hydrodynamic instabilities surrounding the parameter space of sonolu-
minescing bubbles. The Rayleigh-Taylor instability is shown to limit bubble oscillations only in a small region
near a border at small radii in noisy environments. Also, two different noise-induced instabilities by secondary
collapses are identified. The reason for period-doubled, anisotropic emission is found to be the coupling of
radial and surface oscillations. Furthermore, an approximate universal border is shown to exist above which the
bubble is destroyed by the parametric instability. The results are compared to experimental results from several
publications using different experimental setups.
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I. INTRODUCTION

An air-seeded bubble in water driven by a strong sound
field can oscillate stably for very long time intervals �1�.
Because of enormous compression rates, high temperatures
occur, leading to visible light emission at collapse time �2�,
termed sonoluminescence �SBSL�. A prerequisite for the sta-
bility of the process is an equilibrium set up by diffusive
influx of dissolved air and outflux of dissociated reaction
products. For air-seeded bubbles a dynamical equilibrium is
achieved due to the existence of argon as a noble gas �3�.
Sonoluminescing bubbles exist only in a limited parameter
range. An upper threshold is known to exist in the direction
of high pressures and large ambient radii. The bubble disap-
pears and cannot be seeded again until the driving pressure is
lowered. Surface waves have been implicated as responsible
for the destruction. As the amplitude of these oscillations can
increase to the size of the radial oscillation amplitude, the
bubble splits into fragments �4� and may not survive this
catastrophic event.

Radial and surface oscillations of bubbles are calculated
and their type and behavior is determined. The total param-
eter space of sonoluminescing bubbles is scanned for differ-
ent instabilities and the results are mapped.

II. RADIAL OSCILLATIONS

The Gilmore model �5� describing the radial motion of a
bubble in a compressible liquid is integrated numerically.

RR̈�1 −
Ṙ
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Here, R is the bubble radius, C, �l, and p�R , Ṙ� are the speed
of sound in the liquid, its density, and the pressure at the
bubble wall, respectively. The Tait equation is taken as the
equation of state for water, using n=7.025 and B
=3046 bars �6� as parameters. pg is the pressure in the
bubble. H is the enthalpy difference of the liquid at pressure

p� and p�R , Ṙ� at the bubble wall. p�= p0+ pA cos�2�ft� is
the pressure at infinity; the ambient pressure p0=1 atm is
increased by the hydrostatic pressure above the bubble. pA is
the maximal ultrasound driving amplitude with frequency f
=20 kHz. The ambient bubble radius R0 is calculated at pA
=0. � is the surface tension and � is the viscosity of the
liquid. The fluid parameters are taken from tabulated values
�7�.

b is a van der Waals hard-core radius and � a polytropic
exponent. Its value is set between 1 �=isothermal� and the
adiabatic exponent of the gas according to an instantaneous

Péclet number �8–10� Pe=R0
2
Ṙ�t�
 /R�t��, reflecting thermal

conduction at the involved time scales. � is the thermal dif-
fusivity of the gas. To avoid a change to isothermal behavior
at the bubble wall turning point during maximum compres-
sion, the bubble wall velocity is kept to its maximum during
positive bubble accelerations at collapse. It is smoothly ap-
proaching the real velocity during the rest of the cycle.

b and � are updated during calculations to reflect the ac-
tual gas content. The value of the thermal diffusivity � is
variable, as it depends on the varying density �g of the gas:

� =
k

�gcp
=

�g�R0�
�g�R�

� 2 � 10−5 m2 s−1. �4�

k is the thermal conductivity and cp the specific heat at con-
stant pressure. The value of � is scaled by the ratio of the
ambient gas density to actual density.

The density in the bubble is calculated by
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pg is the pressure in the bubble, and Rgas
=8.3143 J mol−1 K−1 is the gas constant. The van der Waals
hard-core parameter b is calculated as an average from the
tabulated hard-core values and the number of moles of the i

different gases, i=N2, O2, Ar, and H2O, M̄ is the molar mass
averaged over all gases, and ntotal the total number of moles.

b and M̄ are updated continuously.
The temperature TB is taken to be uniform within the

bubble. It is calculated via the adiabatic compression of a
van der Waals gas by

TB = T0�R0
3 − b3

R3 − b3��−1

�7�

with the ambient liquid temperature T0. Other more complex
approaches exist that include thermal conduction and a tem-
perature jump across the bubble interface �11,12�.

Evaporation and condensation of water molecules at the
bubble wall �3,12–15� are included in the model for the
bubble dynamics, as experimental results �16,17� stress the
importance of a decrease of the polytropic exponent induced
by water vapor at bubble collapse. A simple Hertz-Knudsen
model �18,19� for the change of moles nH2O of water vapor in
the bubble is

ṅH2O = ṅH2O
evap − ṅH2O

cond =
4�R2

MH2O

	c̄�Ts�
4

��g,H2O
sat − 
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�8�

	 is the constant evaporation coefficient �also called the ac-
commodation coefficient or sticking probability�,

c̄�Ts� =�8RgasTs

�MH2O
�9�

is the average velocity of molecules of a Maxwell-
Boltzmann distribution, �g,H2O is the density of water vapor
of molar weight MH2O in the bubble, and �g,H2O

sat is the satu-
rated vapor density �7�. The bubble surface temperature is
taken as Ts=T0. The density of water vapor �g,H2O depends
on the bubble dynamics and is calculated along with the
bubble equation with the help of �5�. The simple model �8�
takes the temperature distributions in the bubble and liquid
as fixed and does not capture all effects occurring during
evaporation, as would more complex treatments �20–22�. 

is a correction factor for nonequilibrium conditions induced
by mass motion of vapor and bubble wall movement
�Schrage correction� �11,14,23�,
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� is a ratio of velocities, Ṙ is the bubble wall velocity, vH2O

is the vapor velocity, and cpeak is the velocity belonging to
the peak of the Maxwell-Boltzmann velocity distribution,

cpeak�Ts� =�2RgasTs

MH2O
. �12�

The change of mass per unit time and unit area j can be
expressed as

j =
ṅH2OMH2O

4�R2 = �g,H2O�Ṙ − vH2O� �13�

and when inserted into �11� leads to

� =
ṅH2O
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R

3cpeak
�14�

for a spherical bubble volume. For small values of � the
approximation 
=1−��� can be made �23�, leading to an
effective constant evaporation coefficient of 	eff=2	 / �2
−	� in �8� and an effective correction factor 
eff of unity.
Calculations show, that 
 varies by as much as 20% around
unity during the collapses. However, in the observed param-
eter range almost no notable difference exists in the amount
of water vapor at collapse time between results of calcula-
tions using a constant value of 	eff and setting 
eff=1, and of
those using �8� with the variable expressions �10� and �14�
together with a smaller value of the evaporation coefficient
	=2	eff / �2+	eff�. Therefore a constant value of 	eff=0.4
�24� is taken in the following calculations.

III. SURFACE WAVES

Not only is a bubble in a liquid oscillating radially, but the
surface may also exhibit a wavy oscillation, as has been ob-
served earlier �25�. The spherical stability of a bubble has
been analyzed by a great number of authors �26–30�. The
problem is involved, since during one oscillation the direc-
tion of bubble acceleration changes as well as the density
within the bubble.

A linear analysis is made studying the perturbation of the
bubble shape �26,31�

r�t,�,� = R�t� + an�t�Yn
m��,� , �15�

where R�t� is the instantaneous bubble mean radius, Yn
m a

surface harmonic of degree n and order m, and an its ampli-
tude. Prosperetti developed a theory for surface oscillation of
a bubble �32� leading to an integro-differential equation for
the amplitude disturbance an. In the linear analysis, the per-
turbation dynamics is independent of m. For small liquid
viscosity integral terms can be dropped. Neglecting the den-
sity and viscosity of the gas content in a liquid with constant
density �l=�0, a simpler expression is �33�
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For a bubble of fixed radius R, the time derivatives vanish
and the natural frequency wn and the damping coefficient bn
for the nth mode can easily be deduced from �16� as

�n
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The first natural frequencies �n /2� , n=2,3 ,4, can be cal-
culated with the usual parameters to 2.638, 4.817, and 7.226
MHz for a bubble of 5 �m ambient radius and 3.687, 6.731,
and 10.097 MHz for a 4 �m bubble. This suggests that the
n=2 surface mode is the first excited mode due to its lower
natural frequency.

Lohse and co-workers �34,35� went one step beyond the
above approximation and arrived at a boundary-layer-type
approximation �BLA�, where the vorticity only acts within a
small distance from the bubble. Using their BLA approxima-
tion on the original equations �32�, including the dependence
on the time varying gas density �g, �32� and neglecting gas
viscosity �36,37�, one gets

än + Bnȧn + Anan = 0, �19�

Bn = 3
Ṙ
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where � is the boundary layer thickness, suggested �38� to be
defined as

� = min�� �

�l�
,

R

2n
� �22�

where � /2� is the ultrasound driving frequency. In the fol-
lowing calculations the boundary layer is set to a value �
=0, which, as can be seen by the results, models stability
boundaries in fairly good agreement with experimentally
measured boundaries �37�.

A. Rayleigh-Taylor Instability

Basically two types of instability have been identified.
The Rayleigh-Taylor �RT� instability �39,40� acts on very
short time scales on the order of the duration of the bubble
collapse. It only acts when the bubble wall acceleration R̈ is
positive such that the lighter gas inside the bubble is accel-
erated into the heavier fluid, namely, water. Small distur-
bances an�R may then be amplified exponentially, eventu-
ally leading to a bubble breakoff. This is most prominently
taking place around the main bubble collapse. Arguments
exist in the current literature that the RT instability may be
suppressed by a proper account of thermal effects in the gas
�28,33�. A suppression when comparing to results in �34� is
also calculated �37�, when the increasing density of the bub-
ble’s interior during the collapse is accounted for �Eqs.
�19�–�22��. Different methods for the calculation of the RT
instability have been developed. Sudden growth of the sur-
face oscillation amplitude to the size of the bubble radius
defines the instability threshold, resulting in a breaking of the
bubble. To induce this instability numerically, different strat-
egies exist. In �34� a random displacement of size 0.1 nm is
added as a microscopic fluctuation to an in �19� during inte-
gration. Others have added a fixed initial kick to the surface
oscillation amplitude of 10 nm shortly before the bubble col-
lapse �29,37�, added Gaussian distributed noise with 0.1 nm
standard deviation as molecular fluctuations �41�, or refor-
mulated the problem as a stochastic differential equation
�36�. Here, Gaussian distributed noise with 0.5 nm standard
deviation is added to �19� during integration. An important
quantity is the absolute value of an�t� /R�t�: A maximum ex-
ceeding a value of unity implies a splitting of the bubble.
Calculation of the above ratio shows that it depends on the
amount and type of noise. Changing the strength of the fluc-
tuation by an order of magnitude is reflected as such and
hinders the determination of the exact position of the RT
instability in parameter space. As the amplification rate of
disturbances induced by the RT instability is inversely pro-
portional to their wavelength, higher order surface harmonics
are used for the calculation. As a side effect, the afterbounce
instability �see next paragraph� as a parametric effect is dis-
appearing for high-order modes �Fig. 1�. The Gilmore equa-
tions together with �19�–�22� are used in Fig. 1 for an argon-
water vapor bubble with van der Waals hard-core driven at
20 kHz including water evaporation and adiabatic-isothermal
switching according to the Péclet number. A drastic increase
of the amplitude of the n=6 mode to a value larger than the
threshold of breakup is seen during main bubble collapse.

Parameter space calculations show that the existence of
the RT instability is limited to a small region in phase space
�Fig. 2�. The radius for an undriven bubble is taken as the
equilibrium radius. Due to usage of the Gilmore model,
which includes a better modeling for acoustic damping when
compared to simpler models, the inclusion of the density
correction in �19�–�22�, and water evaporation-condensation,
it is seen that the RT-unstable region is very small and con-
fined to high pressures and small mean equilibrium bubble
radii. The region gets smaller at increasing pressures �com-
pare �34,36,37,42��. Furthermore, the amount of added noise
in the calculation has to be increased by a factor of 5 to show

SURFACE-WAVE INSTABILITIES, PERIOD DOUBLING,… PHYSICAL REVIEW E 77, 066309 �2008�

066309-3



a notable effect. It may be asked if the added amount of 0.5
nm average Gaussian noise amplitude is too large for experi-
mental conditions. If the answer is yes then a destruction of
the bubble by a genuine Rayleigh-Taylor instability is not
happening.

B. Instability by secondary collapses

An amplification of the surface mode oscillations by re-
peated secondary collapses �afterbounces� subsequent to the
main collapse has been termed afterbounce instability �34�. It

may induce very large surface oscillations leading to the de-
struction of a bubble within a single cycle. The instability is
most predominant for low-order surface harmonics. Two
types of this instability can be observed �Fig. 3�: It can be
triggered by an initial RT instability �Fig. 3, lower graph�
which induces a large surface deformation not leading to
breakup during the main collapse. The deformation is not
damped out until the next afterbounce, thus leading to an
even larger surface deformation during the first afterbounce
collapse while giving the same short-time behavior as an RT
instability. This may repeat until the afterbounces finally get
too small for further amplification. This type of instability
can only be demonstrated numerically with a large amount of
noise fluctuations of 0.5 nm standard deviation of Gaussian
distributed noise.

Another type of amplification by afterbounces is seen to
start to exist near the bifurcation to parametric instability
�Fig. 3, upper graph�: Due to the added noise the surface
oscillations get very large and may exceed the minimum of
the mean bubble radius thus leading to destruction. This hap-
pens only at later afterbounces which resonantly amplify the
surface deformations. These deformations grow only from
cycle to cycle once the parameters are set to values above the
threshold for parametric instability. This type of afterbounce
instability also exists for small amounts of added noise. Each
instability exists in its own distinct region in the parameter
space �Fig. 4�.

C. Parametric instability

The parametric instability, in planar geometry also known
as the appearance of Faraday waves �43,44�, describes the
growth of the absolute magnitude of the surface deformation
amplitude an over many cycles of the driving sound. If small
disturbances an�R are vanishing from period to period, the
bubble is said to be parametrically stable. Some debate has
occurred concerning the role of viscosity concerning the
parametric instability �45,46� resulting in an underestimation
of the excitation threshold of bubble radii for low driving
pressures. A semianalytical approach �29� and more exact
numerical models �47,48� finally showed the validity of Eqs.
�19�–�22� at least in the parameter region for sonolumines-
cence.

0

0.5

1

1.5

n=2

0 0.5 1 1.5
Time [µs]

0

0.5

1

1.5

S
ur

fa
ce

D
is

to
rt

io
n/

M
ea

n
R

ad
iu

s

n=6

FIG. 1. Rayleigh-Taylor instability: The driving pressure is 1.55
bars, the mean ambient bubble radius 0.903 �m, and the driving
frequency 20 kHz. Shown is the ratio of the amplitude of surface
distortion to mean radius. Maxima and minima are seen around the
main bubble collapse and subsequent afterbounces. The n=2 �upper
graph� surface harmonic shows a smaller distortion at the main
collapse which is amplified by the afterbounces. The n=6 �lower
graph� surface harmonic shows a large distortion at the main col-
lapse and hardly any reaction to the afterbounces.
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FIG. 2. �Color online� Rayleigh-Taylor instability of an argon-
water vapor bubble: In the parameter space spanned by driving
pressure and equilibrium radius, the average maximum of the ratio
of instantaneous surface deformation to mean radius is color coded.
The maximum deformation ratio of modes n=2–6 is taken around
the main collapse and averaged over ten consecutive driving oscil-
lation cycles. Within the contour lines the value is larger than unity,
implying splitting of the bubble. The equilibrium radius is taken as
the value of radius with no periodic forcing amplitude applied.
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FIG. 3. Two types of afterbounce instabilities: Upper: Driving
pressure is 1.4 bars, ambient radius 5.23 �m. Lower: Driving pres-
sure is 1.7 bars, ambient radius 2.51 �m. Driving frequency is 20
kHz. The times of the main collapses are indicated by arrows.
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The parametric instability is calculated in principle using
Floquet’s theorem by calculating the amplification rate of a
small perturbation after one period of a steady-state radial
oscillation �34�. In the parameter region analyzed here, this
can be relaxed to monitoring the growth of the surface de-
formation amplitude an over several cycles. It is found that
the n=2 mode has the lowest threshold for a per period am-
plification rate larger than unity. Figure 5 shows a typical
example of parametric amplification of an n=2 mode. Dur-
ing a single period the time trace shows the development of
a surface oscillation. It is seen that the surface oscillations
are driven by the afterbounces. The oscillation period equals
one-half of the driving afterbounces. The envelope shows an
increase of the oscillation amplitude followed by a subse-
quent decrease. The remaining amplitude of the surface de-
formation at the time of the next main collapse is amplified
by the RT instability, again resulting in a parametric oscilla-
tion. If the maximal amplitude is increasing over the time
scale of several periods this leads to bubble breakup.

Figure 6 shows the value of the growth rate per driving
period of the n=2 surface oscillation mode in the parameter
space of SBSL. Parameters of the equilibrium radius and
driving pressure from within or above the white contour lines
show parametric instability leading to bubble breakup. As a
tendency, a lower driving amplitude and smaller bubbles are
more stable. However, a fine structure is superimposed onto
the graph, showing individual cells separated by horizontal
and vertical lines. At the lines the amplification rates are
smaller compared to those within each cell. This is true be-
low the stability threshold as well as above it. Near the
boundary a more complicated scenario exists: Eventually a
cell contains an island surrounded by a white contour line
denoting the presence of an unstable region within an other-
wise stable cell.

Figure 7 shows simulations of the amplitude of the n=2
surface oscillation mode with two parameter settings from

within adjacent cells of Fig. 6. Time sections of blowups of
subsequent oscillations are shown. Both rows show a para-
metric amplification of the surface oscillation amplitude.
However, in contrast to the second, the first row shows an
alternating sign symmetry of the wave form of consecutive
periods. This also results in an opposite sign of the amplitude
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FIG. 5. Parametric instability of an argon-water vapor bubble.
The maximal amplitude of surface deformation increases during
several periods of the driving sound to a value larger than the ra-
dius, thus leading to bubble breakup. Upper graph: The upper trace
shows bubble radius, while the lower trace shows surface oscilla-
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during the main collapse �marked by arrows�. Whenever a
parameter setting is picked from an adjacent cell, a transition
from nonalternating to alternating behavior is made. This is
true within the whole parameter space, for parametrically
stable or unstable settings. An alternating parametrically am-
plified wave form is also seen in Fig. 5.

The amplitude of the n=2 oscillation is about 2% of the
mean radius at main collapse at the time the ratio of n=2
oscillation to mean radius exceeds 1 during the afterbounce
oscillations, implying breakup of the bubble.

IV. DISCUSSION

The region of hydrodynamic stability of driven bubbles in
the parameter range of sonoluminescence has boundaries in
the direction of increasing equilibrium radius and increasing
driving pressure. The Rayleigh-Taylor instability is numeri-
cally shown to be limited to a region of very small bubbles at
high driving pressures. The instability set up by secondary
collapses limits the accessible parameter space also in the
direction of larger equilibrium radii as well as higher pres-
sures. The determination of the exact position of the bound-
aries is hindered by the amount of added noise used in the
numerical procedure. When comparing to experimentally de-
termined boundaries, the experimentally existing noise
should also be considered.

The parametric instability limits the parameter space
mostly in the direction of growing radii. A consequence for a
sonoluminescing bubble driven near the threshold of para-
metric stability is that an appreciable distortion �e.g., prolate-
oblate ellipsoid� exists during the collapse. This may result in
a directional radiation of sonoluminescence light output �49�.
This has been seen previously in experiments �50–52�. Mea-
surements presented in �51–53� have shown that during un-
stable SBSL, where the equilibrium radius of the bubble and

also its spatial position and driving pressure change, a bubble
may show different radiation behavior, changing from uni-
form to nonuniform, and vice versa. This may be understood
as radiation from a bubble entering and leaving islands of
symmetrically different parametric stability. Interestingly,
measurements in �51,52� show a double periodic cycle in the
intensity of spatially directed radiation near the upper thresh-
old of SBSL and during unstable SBSL. This can be well
understood with the results of Fig. 7, where the surface am-
plitude at collapse alternates for subsequent periods of the
driving, revealing a symmetry change of the bubble surface
at main collapse with a doubled period. As the average radial
oscillation of a bubble is only driving the surface oscillation
and experiences no back coupling, it would be unaffected in
this scenario, resulting in a constant periodic collapse as
measured in �52�. The absolute value of the parametric sta-
bility is only slightly above one in the first two �for increas-
ing radius� elongated cells above the threshold in Fig. 6.
Thus it may be possible that nonlinear surface mode effects
may inhibit the growth, leading to bubble destruction. Also
in the case of a bubble growing by diffusion �4� it may pass
through an unstable island fast enough without being de-
stroyed �52,53�.

The existence of the cells in Fig. 6 is a consequence of
coupling of nonlinear oscillators �one sinusoidally driven ra-
dial oscillator driving the surface oscillator� and does not
depend on the types of models and approximations used.
Signs of a cell-like structure can also be seen in graphs
showing parametric boundaries published by other authors
using different models and approximations �27,33,38�. The
exact positions of lines of instability in parameter space
spanned by ambient radius and driving pressure do depend
somewhat on the models and parameters used �in accordance
with the current literature�. Their selection can only be jus-
tified by comparison with experimental data. Models using a
nonuniform bubble interior should find inner high-pressure
peaks or shock waves being detached from the elliptical
bubble surface, resulting in a nonspherical core. This will
lead to a nonisotropic emission as well. In fact, molecular
dynamics simulations have been published �54� that report
nonisotropic emission upon collapse of slightly ellipsoid
bubbles during SBSL.

An instability that has as yet not been analyzed in SBSL
research, but may be of importance, is the Richtmyer-
Meshkov instability �55–57�. It occurs when a shock wave
interacts with the gas-fluid interface. The Kelvin-Helmholtz
instability �57� occurs when there is a fluid motion parallel to
the interface between gas and water, which may be present in
the form of microstreaming �58,59�.

V. APPROXIMATE UNIVERSAL BOUNDARY

The calculated threshold for the parametric instability us-
ing the boundary layer approximation in �22� is found to be
lower than the threshold at which a bubble disappears in
experiments. It has been shown �37� that smaller values of
the size of the boundary layer � �Eq. �22�� result in a shift of
the parametric instability to larger ambient radii. Actually,
setting �=0 resulted in the best coincidence of numerical and
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FIG. 7. Parametric growth of surface deformation of an argon-
water vapor bubble: The time dependence of the �n=2� surface
oscillation per radius ratio is shown for four consecutive time sec-
tions around the main collapse �marked by arrows�. Data from two
different parameter settings have been taken. First row: equilibrium
radius R0=5.839 �m at 1.35 bars; second row: R0=6.0 �m at 1.35
bars. Note the alternating symmetry in the first row.
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experimental stability boundaries. One has to cope with the
fact that it is somewhat difficult to measure the bubble’s
ambient radius. This is because of limited optical resolution
and the question of when and how to measure an ambient
radius in the case of sinusoidal driving. A solution is to mea-
sure the maximal radius Rmax of the bubble during an oscil-
lation.

Figure 8 shows Rmax
PI f , which is the maximal bubble radius

at the first lower border of parametric instability times the
driving frequency, as a function of the driving pressure over
ambient pressure ratio. An almost linear dependence is sug-
gested over a large parameter variation covering the whole
SBSL driving parameter space. A linear regression over all
data points results in Rmax

PI f =−2.296+2.648�pA / p0� with a
standard error of 0.01 in both constants. A more detailed
calculation �Fig. 11� of the boundary shows the same but
very squeezed roughness as Fig. 6, with all the long island
lines running parallel to the line in Fig. 8.

Various data of the maximal bubble radius at the border of
SBSL extinction have been obtained from the literature and
are shown in Fig. 9. The data sets have been taken by differ-
ent authors, with different setups, driving frequencies, and
pressures. Ambient pressures have not always been pub-
lished, nor has the hydrostatic pressure induced by the water
column on top of the bubble, which has hence been set to an
elaborated estimate. A very good agreement with the calcu-
lated linear relationship in Fig. 9 is seen. In particular, the
detailed results from �63� agree well. The outmost lying
circle corresponds to a published ambient pressure being
somewhat “out of sequence.” The down triangles �from re-
sults of Fig. 5, curves a and b in �16�� lie outside because
they are taken at an ambient pressure of 2 bars, which is not
in the applicability range of the dependence suggested by
Fig. 8. The results represented by the squares stem from a
rather noisy experiment. The hollow circle is a maximally
driven nitrogen bubble �65,66� at 9 °C close to breakup.

Experimental and numerical studies have been made con-
cerning the dependence of light output on change of ambient

pressure �67,68�. The authors find a linear increase of the
number of photons as the ambient pressure p0 is decreased.
Here we are concerned about the maximally obtainable
bubble radius close to the border of instability. At constant
frequency and driving pressure, a decrease of p0 increases
the maximal bubble radius at the border of parametric insta-
bility too, eventually leading to a higher number of emitted
photons.

The nearly perfect linear dependence of the threshold line
Rmax

PI f as a function of normalized pressure pA / p0 in the pa-
rameter range for SBSL suggested by Figs. 8 and 9 can be
explained: A larger maximal radius leads to a more violent
bubble collapse. The resulting larger amplitudes of after-
bounces lead to stronger excitation of surface waves. The
increasing frequency of the collapses leads to a further am-
plification as the surface waves have less time to be damped
between each excitation. The dependent axis has units of
velocity. Parametric instability is induced when this thresh-
old velocity is passed over. The requirement of pressure axis
normalization by the ambient pressure is also seen in the
case of the ambient pressure dependence of diffusive stabil-
ity lines �3,69,70�. A larger ambient pressure decreases the
maximum radius during the oscillation.

The existence of the approximate universal boundary of
the parametric instability is shown to be robust against
changes of the bubble equation and various approximations
made. Figure 10 shows parametric instability lines for the
Gilmore, Keller-Miksis �71�, and modified Rayleigh-Plesset
equations �3� driven at f =20 kHz. The equations are aug-
mented with the other model equations mentioned earlier.
Hardly any difference with the choice of bubble equation is
visible. Due to its more complete modeling capabilities for
radiated sound, the Gilmore equation shows slightly smaller
values of the maximal radius for large forcing amplitudes
due to acoustic energy radiation upon collapse in the form of
shock waves. Calculations for the modified Rayleigh-Plesset
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model with an additional change in approximation have been
made: A purely adiabatic bubble compression with constant
adiabatic exponent �Eq. �7�� shows the largest deviation from
the line calculated from Fig. 8 to values that are also well
below the experimental data points from Fig. 9. The neglect
of the evaporation-condensation equations also results in
overall smaller values, as does the inclusion of the BLA
approximation via Eq. �22�. The latter is in accordance with
the results from �37� on the ambient radius. Results for a
different equation of state for the gas inside the bubble �ideal
gas� do not show any considerable difference from the re-
sults for a van der Waals hard-core gas. This motivates the
assumption that using a more realistic, but computationally
expensive, soft shell model �72� also leads to a very small
difference between the results.

Simulations using molecular dynamics have been pub-
lished �54,73,74� that use a bubble equation as a launch con-
dition. Back reactions of nonisotropic bubble interiors on
surface oscillations have not yet been studied in this context.
Analysis of those may lead to further agreement of theory
and experiment.

Figure 11 shows the regions of all instabilities analyzed
before in a single graph. The comparison shows that the
threshold for the noise-induced afterbounce instability AB1
is shifted to smaller maximal radii below the parametric in-
stability. The Rayleigh-Taylor instability RT occurs at
smaller maximum radii near the border of the afterbounce
instability AB2. A small gap with none of the above insta-
bilities extends to larger maximal radii with increased driv-
ing pressure.

VI. CONCLUSIONS

Nonisotropic radiation in combination with spatially di-
rected period doubling has been observed in experiments by

Levinsen et al. In order to find an explanation for this, dif-
ferent hydrodynamical instabilities have been mapped
throughout the whole parameter space. The parametric insta-
bility induces slowly growing surface waves, calculated as a
prolate-oblate oscillation. The structure of the growth rate of
this instability mapped in parameter space shows a ragged
threshold line, consisting of multiple islands separated by
stability zones. The dynamical behavior in adjacent islands is
different. In one island the surface oscillations catch up with
each other such that the bubble is always prolate or always
oblate at collapse. In the neighboring island, a period-2 os-
cillation is seen such that for one period the bubble is oblate
while in the next it is prolate at collapse. This last type of
oscillation will result in a spatially directed emission of light
with a period-doubled intensity, just as observed in the ex-
periment.

The Rayleigh-Taylor instability occurring around collapse
upon acceleration of the lighter fluid �gas� of the bubble into
the heavier fluid �water� is calculated using varying gas den-
sity and higher-order disturbances. This instability is found
to occur only at small ambient radii and stronger forcing, and
should therefore not occur at the upper driving pressure
threshold of SBSL. Two different types of afterbounce insta-
bility have been identified and shown to exist in different
regions of the parameter space. For experiments with a high
amount of noise �sound disturbances, higher ambient tem-
perature� one type of afterbounce instability may impose an
upper limit to SBSL.

A global threshold function has been found in the driving
pressure–maximum radius space at the parametric instability.
Within the limits of the ragged islands mentioned earlier,
which are visible only in very detailed calculations, a rescal-
ing of the pressure axis with the ambient pressure and the
maximum radius at threshold with the driving frequency re-
veals a straight line dependence in the SBSL parameter
range. All available experimental data from the literature
have been inserted into a graph. Within experimental accu-
racy a global threshold value of the parametric instability as
a function of rescaled pressure can be deduced.
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